Verified, Validated, or Certified?

Harry R. Schwartz

February 17, 2017

What’s the difference between a verifying compiler, a validating compiler, and a
certifying compiler?

All three of these strategies accomplish the same goal: given source code S, we
should be able to prove that a compiler generates target code C' such that S and
C satisfy the same specification. We write this as S ~ C, which indicates that
S and C are semantically equivalent.

I didn’t understand the difference between these strategies—I think I thought
they were all vaguely synonymous?—but §2 of Leroy’s Formal Verification of a
Realistic Compiler! clarifies the distinctions.

A verified compiler is accompanied by a proof that, for any .S, it’ll either throw
an error? or generate code C such that S ~ C. This is the direct approach
that usually manifests as “write it in Coq and export it to OCaml.” A verified

compiler is correct by construction.

A walidated compiler has two components: an unverified compiler and a verified
validator. The validator is a Boolean function that takes S and C and returns
true if S ~ C. In other words:

VS, C, Validate(S,C) — S ~ C

Note that the general problem of determining whether S ~ C for any S and C'
is undecidable, so most validators would probably conservatively return false if
S ~ C couldn’t be determined.

A certified compiler passes the verification buck along to its users. Given source
code S, it’ll either fail to compile or produce code C' and certificate 7, where m
is a proof that C' = S. The user (or, more likely, a client library) can then check
that 7 is correct with a verified proof checker.

1Xavier Leroy, Formal verification of a realistic compiler. Communications of the ACM
52(7), July 2009.

2Note that a compiler that only throws errors satisfies this definition. I was delighted to
learn that I’ve successfully (if unknowingly) written a verified compiler!



The compiler itself doesn’t need to be verified, since users can ascertain for them-
selves (using the certificate) that the compiled code has the same specification
as the source.

To sum up, these three approaches all guarantee that S ~ C:

e A verified compiler,

e An unverified compiler with a verified validator, and

e An unverified certifying compiler paired with a verified client-side proof
checker.

If you want to prove that your compiler preserves semantics, then, you'd probably
want to pick one of these three strategies. You could also structure your compiler
as a series of passes, each of which would use one of these. Passes compose
trivially, so a chain of correct passes would yield a correct compiler.

These terms don’t just apply to compilers! They’re used all over the place in
the study of formal methods and can be applied to any kind of algorithm. I'm
only emphasizing compilers in this post because they’re a convenient example
(and because they’re the topic of the CompCert paper).

Now entering the realm of speculation...

Since all three of these strategies make the same guarantees, could we automat-
ically change strategies? For example, given a validating compiler, could we
automatically construct an equivalent verified compiler for the same specification?
Leroy notes that it’s theoretically possible to construct a certifying compiler
from a verified compiler, but I wonder if that’s true more generally. Do these
form an equivalence class? If so, what’s the name of that class, and what else is
in it? This sounds terribly hard to implement, but I'd be curious to know if it’s
theoretically possible.



	Now entering the realm of speculation…

