
Why Formal Semantics?

Harry R. Schwartz

January 7, 2017

A formal semantics is a mathematical model used by programming language
designers and researchers to describe how a language works.

Terms in a formal semantics might look like:

e ::= x |λx :τ.e | e e | c

Or like:

Γ ` e1 :σ → τ Γ ` e2 :σ
Γ ` e1e2 :τ

These terms define aspects of the structure and evaluation of a language.1 We’ll
discuss how to actually read a formal semantics in a future post.

A formal semantics is distinct from an informal semantics. Some examples of
those are:

• An ANSI specification written in prose,
• An RFC,
• A canonical book describing the language, or
• A test suite that all implementations of a language must satisfy.

These can all describe the behavior of a language, often extremely well, but they
don’t give us the machinery to prove things about a language the way a more
mathematically modeled formal semantics does.

What might we want to prove? Well, all kinds of things:

• Certain statements will always terminate.
• It’s impossible to dereference a null pointer.
• Type safety.
1These particular terms are from the formal semantics of simply typed lambda calculus.

The first one defines the possibles values of an expression, and the second describes function
application. Technically the first expression describes syntax, and only the second is really
semantics, but I’m being intentionally careless with terminology in this article to get the basic
concepts across.

1

https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/Simply_typed_lambda_calculus

• Race conditions can’t occur.

It’s reasonable to wonder whether a formal semantics really makes it easier to
make these guarantees. Is it easier to write bug-free mathematical logic than it
is to write bug-free code?

For a working programmer it’s definitely advantageous, since you don’t have to
do anything yourself to gain these benefits. Rather than proving (or, more often,
hoping) that these kinds of bugs don’t infest your program, you can be confident
that the designers of your language have proved that those bugs can’t exist in
any program in the language.

A formal semantics is useful for a language designer, too, but lots of mainstream
languages don’t have one. I suspect that’s because programming language theory
is still a niche topic and most language designers haven’t been deeply steeped
in it. It’s much easier to hack together an interpreter for a language than it is
to prove theorems about it, at least at first, so more people do that.2 It sort of
reminds me of the “test-driven development slows you down” fallacy, but that’s
a separate rant.

Using a language with a formal semantics also makes it practical to perform
complex static analysis on your code. It’s awfully hard to leverage tools like SMT
solvers or theorem provers without a mathematical definition of the language.
We can sometimes even statically analyze the resource usage and performance
characteristics of our code,3 which feels totally magical to me.

So, formal semantics: pretty handy!

2Heck, I’ve done it, too. Blueprint is a cute little language with no formally defined
semantics (or guarantees of any kind, for that matter). On the bright side, though, it has no
users and is therefore unlikely to harm anyone. :-)

3Jan Hoffman gave some terrific lectures on this at OPLSS 2016, and his research group at
CMU is actively working in this area.

2

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#Verification
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#Verification
https://en.wikipedia.org/wiki/Automated_theorem_proving
http://www.cs.cmu.edu/~janh/
https://www.cs.uoregon.edu/research/summerschool/summer16/curriculum.php

