Met’s talk about Y

Harry Schwartz

thoughtbot

February 17, 2016

Harry Schwartz (thoughtbot) Aet's talk about Y

Combinators

A combinator is a A-term with no free variables.

@ So A\xy.xy(xy) is a combinator, since both x and y are bound, but

@ Ax.xy isn't, because y is free.

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 2 /13

Especially interesting combinators have names

Axyz.x(yz)
AXyz.xzy
AX.X

AXy.x
Axyz.xz(yz)
AXy . Xyy

S0 XT 0w

SKI calculus, B,C,K,W system, etc. ..

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 3/13

The Y combinator

M. (Ax.f(x x))(Ax.f(x x))

Harry Schwartz (thoughtbot) Aet's talk about Y

People feel strongly about Y

Af(Azf(Az fzT

Harry Schwartz (thoughtbot) February 17, 2016 5/ 13

Why Y7

The A-calculus is Turing-complete, but it doesn’t have an obvious
mechanism for recursion/looping.

def factorial(n)
if n ==
1
else
n * factorial(n - 1)
end
end

The problem: How do we reference “the function we're in?”

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 6 /13

How to achieve self-reference?

If we permitted self-reference, we could say:

fi=Xx(x==071: x*f(x—1))

Harry Schwartz (thoughtbot) et's talk about Y February 17, 2016 7 /13

How to achieve self-reference?

If we permitted self-reference, we could say:

fi=Xx(x==071: x*f(x—1))

Instead, we can pass f in as an argument:

F=MM((x==071: xxf(x—1))

Harry Schwartz (thoughtbot) et's talk about Y February 17, 2016 7 /13

How to achieve self-reference?

If we permitted self-reference, we could say:

fi=Xx(x==071: x*f(x—1))

Instead, we can pass f in as an argument:

F=MM((x==071: xxf(x—1))

We need to find a p that satisfies Fp = p. This is the Big Idea.

Harry Schwartz (thoughtbot) et's talk about Y February 17, 2016 7 /13

Fixed-points

x is a fixed-point of f iff f(x) = x.

So if Fp = p, then p is a fixed-point of F.

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 8 /13

Fixed-points in A-calculus

For any f, (Ax.f(x x))(Ax.f(x x)) is a fixed-point of f.

Proof:

X = (Ax.f(x x))(Ax.f(x x))
= \[x == (Ax.f(x x))].f(x x)
= F((xF(x x))(Ax.F(x x)))

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 9/13

And here’s the Y combinator again

So if we wanted a function that’'d return a fixed-point of another function:

Y = M.(Ax.f(x x))(Ax.f(x x))

Harry Schwartz (thoughtbot) et's talk about Y February 17, 2016 10 / 13

And here’s the Y combinator again

So if we wanted a function that’'d return a fixed-point of another function:

Y = M.(Ax.f(x x))(Ax.f(x x))

Equivalently:

YF = F(YF)

Harry Schwartz (thoughtbot) et's talk about Y February 17, 2016 10 / 13

And here’s the Y combinator again

So if we wanted a function that’'d return a fixed-point of another function:

Y = M.(Ax.f(x x))(Ax.f(x x))

Equivalently:

YF = F(YF)

Y is an example of a fixed-point combinator.

Harry Schwartz (thoughtbot) et's talk about Y February 17, 2016 10 / 13

Let's crank this out

31=YF3
=F(YF) 3
=MM.(x==071: xxf(x—1)) (YF)3
=M(x==071: xx(YF)(x—1))3
=3==071:3%(YF)(3-1)
—3%(YF)2
— 3% F(YF) 2
=3x(MM.(x==071: x*xf(x—1))(YF)2)
=3x(M.(x==071: xx(YF)(x—1))2)
=3%x(2==071: 2x(YF)(2—-1))
=3x(2x(YF) 1)

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 11 /13

Let's crank this out (cont.)

3 =...
=3x(2x(YF) 1)
=6x(YF)1
=6x*F(YF)1
=6x (M Ax.(x==071: x*xf(x—1))(YF) 1)
=6*x(M.(x==071: xx(YF)(x—1))1)
=6*x(1==071: 1x(YF)(1-1))
—6%(YF)0
— 6% F(YF) 0
=6x(MM.(x==071: xxf(x—1))(YF)O0)
=6%x(0==071: 0x(YF)(0—-1))
=6x*1
=6
February 17, 2016 12 / 13

More stuff to read

The article | cribbed this presentation from

Wikipedia: Fixed-point combinator

Wikipedia: SKI combinator calculus

A-calculus in the Haskell wiki

Raymond Smullyan, To Mock a Mockingbird
Douglas Hofstadter, Gédel, Escher, Bach

Harry Schwartz (thoughtbot) Aet's talk about Y February 17, 2016 13 /13

https://medium.com/@ayanonagon/the-y-combinator-no-not-that-one-7268d8d9c46##.gmfc5ycn0
https://en.wikipedia.org/wiki/Fixed-point_combinator##Fixed_point_combinators_in_lambda_calculus
https://en.wikipedia.org/wiki/SKI_combinator_calculus
https://wiki.haskell.org/Lambda_calculus

