Reading the CS Canon

Harry R. Schwartz

July 3, 2014

Last year, a friend of mine who was learning computer science asked me for
some reading advice. I wrote him the following big list of suggestions. If you're
looking for reading suggestions, they might be useful for you, too!

It’s biased toward classic books over papers, since it’s meant to be approachable.
It’s also (unsurprisingly) biased towards things I think are especially interesting,
so it thoroughly covers distributed systems, theory, Al, and algorithms while
totally ignoring (for example) security, graphics, and databases.

I’ve included links to PDFs of papers when I could easily find them.

Learning the environment

The UNIX Programming Environment, Kernighan and Pike. Learn to use
the terminal.

Learning the bash Shell, Newham and Rosenblatt. You're gonna have to learn
shell scripting, so just make your peace with it.

Once you've gotten pretty familiar with this stuff, and you've put in a few dozen
hours of programming, it might be worth it to invest some time to learn a few
handy tools. Specifically:

o A serious editor. Emacs and vi are both great (though one is better than
the other, cough)

e Version control. git seems to have won, so start with that.

o Regular expressions.

Writing good code

Test-Driven Development By Example, Beck. TDD is pretty darn impor-
tant, and Kent Beck is its prophet.

Design Patterns: Elements of Reusable Object-Oriented Software (the
“Gang of Four” book), Gamma, Helm, Johnson, and Vlissides. A supremely
useful book if you spend a lot of time in a static language like Java. Otherwise
this next one is way better:



Design Patterns in Ruby, Olson. Infinitely more useful than Gang of Four if
you’re writing in a dynamic language. And a more enjoyable read, in my opinion.

Clean Code, Martin. Learn about code smells!

And what the hell, a couple classic papers. They’re mostly interesting historically,
but that’s only because we’ve absorbed the ideas in them so completely:

o Dijkstra, Go To Statement Considered Harmful
e Parnas, On the Criteria To Be Used in Decomposing Systems into Modules

Being a good programmer

The Pragmatic Programmer, Hunt & Thomas. Seriously, so good. Learn
why there’s a rubber ducky on my desk!

The Mythical Man-month, Brooks. Why adding people to a late project
makes it later, and stories about IBM in the 60s.

Ruby (+ Rails, why not!)

Eloquent Ruby, Olson. The best book for learning Ruby. Russ Olson is one of
my favorite technical writers.

Practical Object-Oriented Design in Ruby, Metz. What it says on the tin:
learn to use good OOP style in Ruby. Sandi Metz is terrific.

Metaprogramming Ruby, Perrotta. Learn to sin against the Ruby object
system. Punch some ducks.

Agile Web Development with Rails, Ruby, Thomas, Hansson. The book I
first read to learn Rails.

JavaScript

JavaScript: The Good Parts, Crockford. I'm not much of a JS programmer,
but this is the standard book about how to write good Javascript. Focused
on the language and good style, but less interested in, say, building interactive
websites.

Eloquent JavaScript, Haverbeke. 1 haven’t read this one, but I've heard good
things. It’s a bit more introductory than Crockford, and eventually it gets in to
DOM manipulation, so it might be relevant if you're looking to build dynamic
sites.

Algorithms

Algorithms Unlocked, Cormen. A relatively gentle introduction to the world
of algorithmic analysis.


https://files.ifi.uzh.ch/rerg/arvo/courses/kvse/uebungen/Dijkstra_Goto.pdf
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Introduction to Algorithms (“CLRS”), Cormen, Leiserson, Rivest, & Stein.
The standard tome.

Algorithms, Dasgupta, Papadimitriou, €& Vazirani. Covers some stuff (like
FFTs and quantum algorithms) better than CLRS. And alternate explanations
are always nice.

Introduction to Automata Theory, Languages, and Computation (the
“Cinderella Book”), Hopcroft, Motwani, & Ullman. Haven’t read it, but my
officemate in school was a fan.

The Art of Computer Programming (“TAOCP”), Knuth. No one has ever
completely read these books, but they look damn good on a shelf. Every now
and then you’ll come across a problem worthy of cracking these books open and
you’ll feel like a badass.

How to Solve It: Modern Heuristics, Michalewicz & Fogel. 1 love this book!
Specifically, I love dealing with the problems that this book will help you solve.

An Introduction to Genetic Algorithms, Mitchell. The only good book on
genetic algorithms that I'm aware of.

Programming Collective Intelligence, Segaran. Neat stuff. Might be good
for getting your feet wet. Uses Python. The code is a little atrocious, but it
demonstrates the concepts.

Compilers

Compilers: Principles, Techniques, and Tools (“the dragon book”), Aho,
Sethi, € Ullman. Still the definitive book on the subject, but (IMO) a terrible
way to learn to actually build a compiler.

The following papers are a better intro:

e Ghuloum, An Incremental Approach to Compiler Construction

e Crenshaw, Let’s Build a Compiler

o Sarkar, Waddell, & Dybvig, A Nanopass Framework for Compiler Educa-
tion

e Schorre, META II: A Syntaz-Oriented Compiler Writing Language

AI & Machine Learning

Artifical Intelligence: A Modern Approach, Russell & Norvig. The
standard undergrad text. Pretty darn good.

Paradigms of Artificial Intelligence Programming (“PAIP”), Norvig. A
guide to good Lisp programming disguised as a collection of Al techniques.

Pattern Recognition and Machine Learning, Bishop. The standard intro
to statistical machine learning.


http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf
http://www.compilers.iecc.com/crenshaw/
http://www.cs.indiana.edu/~dyb/pubs/nano-jfp.pdf
http://www.cs.indiana.edu/~dyb/pubs/nano-jfp.pdf
http://www.ibm-1401.info/Meta-II-schorre.pdf

Neural Networks: A Systematic Introduction, Rojas. Not too famous,
but it’s my favorite book on artificial neural networks.

Neural Networks for Pattern Recognition, Bishop. Just what it sounds
like.

Networking

Computer Networking: A Top-Down Approach, Kurose. The standard
undergrad text. Covers most of the stuff you’d need to know.

TCP/IP Illustrated, Volume I, Stevens. Covers TCP (a key networking
protocol) in painstaking depth.

C, Systems, and OSes

The C Programming Language (“K&R”), Kernighan € Ritchie. Ya gots
to learn C to write OSes, son. This is the classic intro, though modern C
development practices have moved on significantly.

Operating System Concepts (“the dinosaur book”), Silberschatz. My under-
grad textbook. No complaints.

Modern Operating Systems, Tanenbaum. I really want to read this. Appar-
ently it’s great: Linus Torvalds used it to write Linux.

The Design of the UNIX Operating System, Bach. A great case study of
how an OS works.

Theory of Computation

Introduction to the Theory of Computation, Sipser. The standard under-
graduate textbook on the subject.

An Introduction to Formal Languages and Automata, Linz. A slightly
less rigorous alternative.

Computers and Intractability, Garey & Johnson. Heavy stuff, but if you
find that you're writing a lot of NP-completeness proofs it’s basically the best.

Distributed Systems

First, N.B. that there are (at least) two alternate definitions of what a distributed
system is:

1. A symmetric system of approximately-identical nodes running the same
code. This is generally what academics mean when they talk about “dis-
tributed systems.” Think flight control systems, highly redundant systems
to manage nuclear reactors, etc.—stuff you could prove theorems about.



2. A large system of heterogeneous machines running different services (maybe
some databases, some queues, some exposed APIs, etc). This is usually
what working engineers mean by “distributed system.” Twitter’s ingestion
system would be an example of this kind of distributed system.

Definition #1

Distributed Algorithms: An Intuitive Approach, Fokkink. The only
distributed systems textbook that I've liked so far.

The Fokkink book should really be supplemented with papers. The following
papers cover most of the high points, and Lamport and Dijkstra in particular
are excellent writers. These are ordered in a semi-sensible way.

o Lamport, Time, Clocks, and the Ordering of FEvents in a Distributed System

e Suzuki and Kasami, A Distributed Mutual Ezxclusion Algorithm

o Dijkstra, Self-stabilizing Systems in Spite of Distributed Control

e Hoare, Communicating Sequential Processes

e Schlichting, Using Message Passing for Distributed Programming: Proof
Rules and Disciplines

e Lamport, Shostak, and Pease, The Byzantine Generals Problem

e Lai and Yang, On Distributed Snapshots

o Dijkstra, Feijen, and van Gasteren, Derivation of a Termination Detection
Algorithm for Distributed Computations

e Lamport, Pazos Made Simple

Christopher Meiklejohn also maintains a nice list of canonical distributed systems
papers.

Definition #2

Definition #2 doesn’t really have a canon that I'm aware of; it’s mostly composed
of inherited folklore and ever-changing best practices. One of the hot terms is
“Service-Oriented Architecture,” so that might get you started in the blogs.

On the subject of “programming language theory applied to building distributed
systems,” consider plowing through Joe Armstrong’s PhD thesis, Making Reliable
Distributed Systems in the Presence of Software Errors.

Lisp & Scheme

Structure and Interpretation of Computer Programs (“the wizard book”),
Abelson and Sussman. The undergrad text at MIT for a bunch of years. Still
considered a rite of passage for learning to program. There are also an excellent
set of accompanying lectures on OCW.

On Lisp, Graham. Macros! They’re great. Being able to rewrite how your
language works has some consequences.


http://amturing.acm.org/p558-lamport.pdf
http://courses.csail.mit.edu/6.852/05/papers/p643-Dijkstra.pdf
http://usingcsp.com/cspbook.pdf
https://www.cs.cornell.edu/fbs/publications/MsgPassRules.pdf
https://www.cs.cornell.edu/fbs/publications/MsgPassRules.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://www.cs.mcgill.ca/~lli22/575/distributedsnapshot.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://christophermeiklejohn.com/distributed/systems/2013/07/12/readings-in-distributed-systems.html
http://christophermeiklejohn.com/distributed/systems/2013/07/12/readings-in-distributed-systems.html
http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/
http://www.paulgraham.com/onlisptext.html

The Art of the Metaobject Protocol, Kiczales, des Rivieres, and Bobrow.
Lisp can orient the hell out of some objects.

If you've read through those other Lisp/Scheme books, you should probably
consider ploughing your way through the “Lambda Papers.”

Programming Language Theory

Concepts of Programming Languages, Sebesta. My undergrad textbook.
It’s fine.

Types and Programming Languages, Pierce. I still haven’t read this one,
but I'd love to. Supposedly it’s awesome.

If you find yourself drawn deeper into functional programming, consider:

o Okasaki, Purely Functional Data Structures
o Pierce, Basic Category Theory for Computer Scientists

A couple fun papers on the topic include:

o Wadler, Propositions as Types

o Hughes, Why Functional Programming Matters

o Meijer, Fokkinga, and Paterson, Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire


http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
http://doc.utwente.nl/56289/1/meijer91functional.pdf
http://doc.utwente.nl/56289/1/meijer91functional.pdf

	Learning the environment
	Writing good code
	Being a good programmer
	Ruby (+ Rails, why not!)
	JavaScript
	Algorithms
	Compilers
	AI & Machine Learning
	Networking
	C, Systems, and OSes
	Theory of Computation
	Distributed Systems
	Definition #1
	Definition #2

	Lisp & Scheme
	Programming Language Theory

