Lifting Lambdas into Supercombinators

Harry R. Schwartz

July 26, 2017

I was recently reading about Edwin Brady’s supercombinator compiler, Epic.
Epic is the backend powering Idris and Epigram (and, optionally, Agda), so I
figured it might be worth a look. A “supercombinator compiler” sure sounded
impressive, but I didn’t know what it was. Let’s figure that out.

First, What’s a Combinator? A combinator is a piece of code (a term) in
which all variables are bound. A variable is bound in a given term if it’s defined
in that term. For example, in the

A

-calculus, the term

Az y.(z y)

is a combinator, since all of the variables in the body of the expression (that is,

x
and

Y
) are bound as arguments. Conversely,

Az.(z x)

isn’t a combinator, since

z
appears as a free variable.
Using

A

-calculus is traditional, but we can talk about this in terms of a more conventional
language, too, like Python. This function is a combinator, since both x and y
are bound:


https://edwinb.wordpress.com/
https://eb.host.cs.st-andrews.ac.uk/epic.php
https://www.idris-lang.org/
https://code.google.com/archive/p/epigram/
http://wiki.portal.chalmers.se/agda/pmwiki.php

def combinator(x, y):
return x + y

This function isn’t, since y is free:

def not_a_combinator(x):
return x +y

Combinators are interesting because they’re self-contained, or “closed.” They
don’t rely on any information unless it’s passed in as an argument, so they
compose well,! which makes them easy to reason about.

So, What’s a Supercombinator? A supercombinator is recursively defined
as “a combinator whose every sub-term is also a supercombinator.” In other
words, a supercombinator is a combinator whose every term, sub-term, sub-sub-
term, etc., is also a combinator. Some lambda expressions are combinators, and
some combinators are supercombinators.

For example, here’s a supercombinator:

Az.(Ay.y y)(z x)
Note that the inner term
Y.y y
is also a supercombinator.

On the other hand, here’s a combinator that isn’t a supercombinator:

Az.(Ay.z y)
The inner term
AyY.T Yy
isn’t a combinator because
T

is free within it, which means that the whole expression isn’t a supercombinator.

Generating Supercombinators Every combinator can be transformed into
an equivalent? supercombinator. For example, in Python, we might have a
function like:

IThey compose so well, in fact, that you can build logical systems on top of them with
expressiveness equal to the
A

-calculus. The SKI and BCKW calculi are prominent examples.

2By equivalent, 1 specifically mean that two combinators of the same arity will 3-reduce to
the same expression when given the same arguments. If that doesn’t mean anything to you,
that’s OK; your intuitive definition of “equivalent” is probably correct. :-)


https://en.wikipedia.org/wiki/SKI_combinator_calculus
https://en.wikipedia.org/wiki/B,_C,_K,_W_system

def outside(x):
def inside(y):
return x +y
return inside(5)

This is a combinator, but not a supercombinator. x is a free variable within the
definition of inside. However, we could transform this expression by passing in
x as an additional argument to inside, like so:

def outside(x):
def inside(x, y):
return x +y
return inside(x, 5)

Now that inside doesn’t reference a free variable, we can lift it into the global
context, like so:

def inside(x, y):
return x +y

def outside(x):
return inside(x, 5)

We’ve eliminated the closure and the function nesting, and the original and
transformed expressions still do the same thing. Our code now consists of a pair
of supercombinators! Neat.

This act of (1) replacing free variables with arguments and (2) extracting the new
combinator into the global context is called lambda lifting. To phrase it another
way, lambda lifting is an algorithm for turning closures (that is, functions with
free variables) into pure global functions.

Compiling with Supercombinators Since every term in a supercombinator
is independent of its context—that is, it contains no free variables—compiling a
program structured as a collection of supercombinators is much simpler than it
would be otherwise. Every A term can be compiled to a global function, with no
nesting or closures.

We could imagine designing a compiler for a purely functional language which:

1. Receives some input code which has been structured as a collection of
combinators,

2. Applies lambda lifting to transform the input into an equivalent collection
of supercombinators, and

3. Compiles them into a target language, with each term corresponding to a
top-level function.

I’'m sure I'm eliding a lot of complexity here, especially in that last step, but
this seems to be the general idea.



So, if we wanted to build a language on top of Epic, we’d first write a compiler
from our language to Epic’s input language (an extended form of the

A

-calculus). Epic would take our jumble of expressions, lambda-lift it into a
collection of supercombinators, and generate C code based on those pure, global
functions.

References There don’t seem to be too many references to compiling with
supercombinators floating around. The few that I've seen are pretty good,
though:

e Simon Peyton Jones, The Implementation of Functional Programming
Languages, 1987. Specifically, see “§13: Supercombinators and Lambda-
Lifting” for a thoroughly relevant elaboration.

e John Hughes, Super-Combinators: A New Implementation Method for
Applicative Languages, 1982.

e Edwin Brady, Epic—A Library for Generating Compilers, 2011.


https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.472.4622
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.472.4622
https://eb.host.cs.st-andrews.ac.uk/drafts/epic.pdf

